《列方程解决实际问题》教学反思
作为一名人民老师,教学是重要的任务之一,对教学中的新发现可以写在教学反思中,优秀的教学反思都具备一些什么特点呢?下面是小编整理的《列方程解决实际问题》教学反思,欢迎阅读与收藏。
《列方程解决实际问题》教学反思1列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。
经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为X…。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的。
格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我想先教会学生找出题目中等量关系式的本领和方法。 我小结出平时做的练习题中经常会出现的一些等量关系,如下:
1、根据常用的数量关系确定等量关系。
例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?
等量关系式:速度×时间=路程。由此可以列出方程:
解:设汽车从甲地到乙地需要X小时。
X×130=1820
X=1820÷13
X=14
答:汽车从甲地到乙地需要14小时。
2、根据几何公式确定等量关系。
例如:平行四边形的面积是11.2平方米,底是5.6米,它的高是多少米?
等量关系式:底×高=平行四边形的面积,根据这个公式列出方程。
解:设平行四边形的高是X米。
5.6X=11.2
X=11.2÷5.6
X=2
答:平行四边形的高是2米。
3、根据题目中有比较意义的关键句确定等量关系。
类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:第一,找出题目中有比较意义的关键句;第二,按照关键句中,文字表述的顺序列出等量关系式。
例1:钢琴的黑键有36个,比白键少16个,白键有多少个?
第一,找出有比较意义的关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“ 少”就是“减”,用“白键的个数-16个=黑键的个数”,再根据等量关系式列出方程。
解:设白键有x个。
x-16=36
x=36+16
x=52
答:白键有52个。
例2:一只大象的体重是6吨,正好是一头牛体重的15倍。一头牛的体重是多少吨?
第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的15倍”,看到“……的几倍”,应该用乘法,“一头牛体重×15=一只大象的体重”, 再根据等量关系式列出方程。
解:设一头牛的体重是X吨。
15X=6
X=6÷15
X=0.4
答:一头牛的体重是0.4吨。
另外,还要注意的是,其实每道题目都可以列出三个等量关系式,要提醒学生注意,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是X单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。
总之,列方程解实际问题只要找出数量间的相等关系,再列式就可以了,等量关系式变化很多,因此方法较多,从不同的角度找出不同的数量关系式,可以列出不同的方程。我觉得对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,选择适合自己的一种方法就可以了,并且要养成良好的检验习惯。
《列方程解决实际问题》教学反思2列方程解决实际问题与学生之前学过的算术法解决问题的相同之处都是需要分析数量关系,区别在于思考方法不同,列方程解决实际问题时,把未知数用字母表示和已知数一同参与列式,运用顺向思维列出方程,在解决某些实际问题时有着明显的优势。如:“已知一个数的几倍多(少)几,求这个数”的问题若用算术法解,需逆向思考,思维难度大,用方程解决,思考是顺向的,学生容易理解。
列方程解决问题的难点是找等量关系,在教学中先让学生学会找等量关系,可从以下几个方面训练。
1、引导学生先找出题中的关键句。如“白色皮的块数比黑色皮的块数的2倍少4块”,引导学生顺着句意把文字叙述‘翻译’成数学语言),很容易写出等量关系:白色皮的块数=黑色皮的块数×2-4。
2、根据学生已经熟练地数量关系确定等量关系。如:速度×时间=路程,单价×数量=总价,工作效率×时间=工作总量。
3、根据几何公式建立等量关系。
总之,列方程解决实际问题只要找出数量间的相等关系,再列方程就可以了,等量关系式变化多,因此方法也多,从不同的角度找出不同的数量关系式,可以列出不同的方程。对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,并且要养成良好的检验习
《列方程解决实际问题》教学反思3今天学习了《列方程解决实际问题》,学生经历列方程解决一步计算的实际问题的学习过程,在练习中学生对列方程解决实际问题的一般步骤和方法掌握不太好。
本节课我重视学生对数量关系的理解和列方程与数量关系的对应的方程。如:例7的数量关系:小军的成绩-小刚的成绩=0.06米,对应的方程是x-1.39=0.06,如果数量关系:小军的成绩-0.06米=小刚的成绩,对应的方程是x-0.06=1.39。
本节课学生设未知数x的后面单位名称会丢掉。在本节课教学中使用的数量关系,实际上就是以前的“…比…多…”和“…比…少…”应用题的数量关系,数量关系:大数-小数=差,大数-差=小数,差+小数=大数。
《列方程解决实际问题》教学反思4今天教学列方程解决实际问题,这个内容是在学生已经认识等式与方程,并学会应用等式性质解一步计算方程的基础上进行教学的。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。
因为之前我们学习的是列方程并解答,今天这是解决实际问题,我是按“写设句——列方程——解方程” ……此处隐藏5084个字……计算的实际问题。
总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。
失败之一:
由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。
失败之二:
没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。
我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。
《列方程解决实际问题》教学反思13例6是这个单元比较难的内容,它集中了单位“1”未知和多(或少)百分之几两大知识点在内,上学期求单位“1”的方程,只学了单位“1”未知时求多(或少)多少的一步方程。所以这一知识点还是有难度的,难在找数量关系式。学生不太习惯从“比九月份节约20%”这样的条件中找数量关系式,虽然这一条件上学期已经常分析,但是主要是应用“九月份用水量×20%=十月份比九月份节约的用水量”,而本例题确要利用这一关系句和线段图找出“九月分用水量-十月份比九月份节约的用水量=十月分用水量”,因而这是此例的难点所在。
今天教学了这一课的内容,从学生的学习情况来看,找单位“1”的量学生是没问题的,主要是数量关系式有一部分学生还是掌握得不好。
练习四的第6、8、9两题我是让学生在课堂上完成的,第六题形同例题,仅有3个孩子解答不正确。第八题正如我所料,错的学生不少。先让学生自己独立完成,再集体交流。单位“1”的量是已知的,用乘法;单位“1”的量是未知的,用解方程或除法。第9题的第(1)个问题学生错的较多,尽管在例题和做练一练的时候已经强调多的量或少的量,但做这题的时候有一部分学生还是不会把10%X与节约的量对应起来,学得不够灵活。
《列方程解决实际问题》教学反思14“列方程解决简单的实际问题”的教学,既要让学生掌握列方程解决简单实际问题的一般过程,学会列方程解决一步计算的实际问题,更要让学生学会思考解决问题的方法。
列方程解决简单的实际问题,和用算式方法解决简单的实际问题有不同的地方,除了形式上的不同,更有思考方法上的不同。教材安排的“例7”是一幅情境图,理解图的意思是必须的,我的教学中引导学生进行摘录:小刚的跳高成绩是1.39米,比小军的跳高成绩少0.06米,小军的跳高成绩是多少米?情境图虽然直观,但表达的信息零星,需要整理,整理也是学好数学的重要方法,其中摘录是常用的整理方法。理解情境图的意思是解决实际问题的前提条件,算式方法、方程方法都必须有这一环节。
“含有未知数的等式是方程”。方程既然是等式,就要从数量间的相等关系入手思考,上题可以从关键句“小刚的跳高成绩比小军少0.06米”寻找,这句话蕴含的数量间的相等关系有二:一是小军的跳高成绩-0.06米=小刚的跳高成绩;二是小军的跳高成绩-小刚的跳高成绩=0.06,应用“大数-小数=相差数”这一规律悟得。
在明确题中数量间的相等关系的基础上,教师指出:“小军的跳高成绩不知道,可以设为x米,再列方程解答。”这里教师的讲授,就是为了让学生体验列方程解决要把未知量与已知量结合起来进行列式,体验和算式解决问题的不同。到此,形成了“整理信息—找相等关系—列方程”的思维框架。至于“列方程解决简单的实际问题”的书写格式,可以通过模仿课本、讨论交流、教师指导、作业反馈来熟悉,熟悉“写设句-列方程-解方程—检验写答句”是列方程解决实际问题的一般步骤。
第一堂课学生的课堂作业有许多毛病,如:解写了两个,“设”前面写了一个,解方程时又写了一个;假设未知数x时后面缺了单位;求得的未知数的值的后面多了单位等等。虽然有诸多的问题,但利用课间小组长的力量和练习课的专门辅导,基本得到全面解决。
“列方程解决简单的实际问题”是用方程方法解决问题的起始阶段,让学生明晰“整理信息—找相等关系—列方程”的思维框架,有着重要的意义,学生们可以用这样的思维框架去用方程解决简单的、复杂的实际问题。还有,要重视找数量间相等关系方法的积累,如根据“部分数+部分数=总数”、公式、常见的数量关系式等去寻找。
长此以往,随着解决问题经验的不断丰富,数学学科的质量也会同步提高!
《列方程解决实际问题》教学反思15列方程解决问题是在学生掌握了解方程的方法并且能够根据图式列方程并计算的基础上进行教学的。在这一章节内容中包含用方程解简单的实际问题,也包含用方程解复杂问题。
成功之处:
学生在学习中最大的困难是如何正确找到等量关系的问题。因此,在教学中,我首先通过例1的教学让学生明确一个数比另一个数多(少)几可以得出如下等量关系:
一个数=另一个数+几(或-几)一个数-另一个数=多几(少几)
还通过练习中出现的倍数之间的关系如一个数是另一个数的几倍得出如下等量关系:
几倍量÷一倍量=倍数一倍量×倍数=几倍量
单价×数量=总价总价÷单价=数量总价÷数量=单价
速度×时间=路程路程÷速度=时间路程÷时间=速度
在例2的教学中通过一个数比另一个数的几倍多几(少几)让学生自己得出等量关系:几倍量=一倍量×倍数+多几(或-少几)
在例3的教学中通过找两个量的和(或差)得出等量关系,如梨的价钱+苹果的价钱=总钱数一个量-另一个量=相差数
在例4的教学中,是比较典型的倍数和(差)问题,可以根据例3的方法去寻找等量关系。
在例5的教学中,是典型的相遇问题,其等量关系既可以根据例3的方法寻找,也可以采用速度和×时间=路程速度差×时间=路程之差
不足之处:
在练习中出现个别学生找不到有关等量关系的信息,导致无法正确列出方程。
再教设计:
在之前的算术法教学中,也应强调等量关系,这样学习方程的时候,学生不至于感觉有难度。