《圆柱与圆锥》教学反思
作为一名优秀的教师,我们要有一流的课堂教学能力,通过教学反思可以很好地改正讲课缺点,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的《圆柱与圆锥》教学反思,仅供参考,大家一起来看看吧。
《圆柱与圆锥》教学反思1《圆柱与圆锥》这一单元内容重点分两大板块---表面积和体积,是简单的立体几何知识,知识显得较为抽象,学生理解起来比较困难,解题时计算的难度也较大,学生出错的现象可以说是多方面的,主要归纳如下:
一、这一单元公式多,学生容易混淆,如圆的周长和面积;表面积和侧面积;圆锥和圆柱的体积(特别计算圆锥的体积时很多的学生总是漏×1/3)。
策略:在理解的基础上熟记各种公式,并利用题组训练突破圆柱和圆锥的关系:1、等底等高,V柱=3V锥
2、等底等积,3H柱=H锥
3、等高等积,3S柱=S锥
二、计算难度大,全是小数的加减乘除法计算,学生容易出错。
策略:加强小数的计算训练,特别是多进行N×3.14的训练,提高计算准确率。
三、审题不认真。在求体积的题目中,一些题目给出圆柱的半径、高单位不统一,学生往往就没注意到,经常出错。
策略:要求学生解题是一定要注意先统一单位,再计算。遇到面积单位、体积单位之间的换算,学生习惯性地使用了长度单位的10进制,要特别注意纠正。
四、对题目的理解不到位,关于圆柱面积的计算经常出错。
策略:以题组的形式进行对比训练。
如:
1、给圆柱体模型刷油漆(求表面积)
2、圆柱形罐头贴商标(求侧面积)
3、厨师帽的材料(求表面积,但不计算下底面)
4、铁桶的材料(求表面积,但不计算上底面)
《圆柱与圆锥》教学反思2前几天我配合学校教研活动讲了一节公开课。这节课是在整理和复习圆柱圆锥基本概念公式以及基础的习题后,针对学生容易出错的圆柱圆锥体积关系的变式习题进行的一节练习课。
让我始料未及的是这节课毁了我从教十二年来所积累的所有自信心。一节课就让我看清了很多人的嘴脸。教研活动对课不对人,针对这节课优点在哪,存在的不足之处又在哪?这样的课型下回再上该怎么去上?这样每一位讲课教师才有信心上好下一节课。而不是因为一节课而否定一个人。哪一位教师也不能保证自己节节课都讲的很精彩,更何况是一节练习课。我们现在的教学又走进了另一个误区,以为一节课学生没有与老师进行互动,没有进行合作学习,就没有体现学生自主学习,进行点对点的课就是一节很不成功的课。我不这样认为。不是常说要在课前了解学生的情况吗
?我作为教师我很清楚我们班学生对这些知识点的掌握情况,讨论也好,合作也好,起不到应有的教学效果。很多学生跟着走了一个过场而已。看似热闹,实际效果不一定好。还不如老师和一部分学生讲,其他人听效果好。他们并不是陪衬。因为我觉得听会也是一种学习。我们不是一直都在讲教学的实效性吗?难道老师们节节课都有讨论有合作吗?讲授讲授有讲有授。有些课是没有必要合作的。
这只是我个人的一点看法,希望我们的教研活动越搞越成功,能有更多的老师参与。但不要一棍子把人打死。必竟给别人评课和自己讲课是不一样的。给教师一个上进的机会。
《圆柱与圆锥》教学反思3最近对圆柱与圆锥知识进行系统的整理和复习,使学生更好的掌握圆柱、圆锥的特征,掌握圆柱侧面积、表面积的计算以及圆柱、圆锥体积的计算公式。会运用所学知识解决一些简单的实际问题。培养学生能够解决问题的能力。
课前,我让学生自己对学过的知识进行了整理,有几个同学整理得挺全面,有的同学把知识点都写上了,但没有条理。所以,课上我通过表格的形式引导学生回顾前面所学知识,总结图形的特征和计算方法,培养了学生有条理的对所学知识进行整理归纳的能力。课上我出了两道具有代表性的题。通过巡视我发现同学们列算式基本没问题,只要同学们认真审题,这类题基本没什么问题。问题是计算速度慢,该记得数据没记住。
《圆柱与圆锥》教学反思4本节课的教学重点要引导学生掌握本单元的知识结构,在充分利用教材的知识形成学生知识网络的基础上,提高学生分析、解决实际问题的能力。针对本课的教学设计,有以下几点思考:
1、加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容的设计加强了与生活的联系,为教师组织教学提供了思路。在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。在实际教学中,学生认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品的活动情境,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。
2、重视探究归纳。教学中让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生,提高学生自主获取知识的能力。
《圆柱与圆锥》教学反思5我们现在的教学倡导向“40分钟”要质量,如何在有限的课堂时间里,在教材固定教学内容的基础上,使自己的教学有广度有深度,其中练习的设计,也是非常重要的一个环节。下面是我执教第二单元《圆柱和圆锥》时的一些心得和感受。
一、 准备要充分
学生哪个环节比较薄弱或是哪里容易出错,相对而言,老教师会有经验得多。作为年轻老师,在有限的时间和精力内,做到精讲精练,确实需要下一番功夫。例如事先把学生做过的练习题先做一遍,开阔自己的视野,丰富和充实课堂练习,争取在40分钟新课里想办法解决,从而提高课堂实效。但是,只教教材,是远远不够的。除了教材上的练习题,平时还有练习册和试卷,老师都要提前准备,也让学生做到“有备而练”,这样,学生做起作业来就不会产生畏难等消极情绪,反而会增强自信心,激发练习兴趣。
二、灵活抓时机
例如在《圆锥体积》一课的新授环节,通过一系列实验,学生不难发现“圆锥的体积是与它等底等高的圆柱的体积的三分之一”,反过来说,“圆柱的体积是与它等底等高的圆锥体积的3倍”。有经验的老师会在这时候进行追问:“在等底等高的条件下,圆柱的体积比圆锥体积多多少?反过来问,圆锥体积比圆柱体积少多少?”从而加深学生对新知的理解,拓展学生的思维空间。我已通过实践证明,这一问一拓展确实可以起到“事半功倍”的效果,学生在做练习册的相关练习时,既轻松又灵活很多。
通过这件事的点拨,我觉得老师要够“灵活”。一方面要深啃教材,全面了解;另一方面也要开放自己的思维,敢于创新。只要是——既让学生加深了对新知的理解和认识,又让学生的思维得到了训练,这样的练习就是有效的练习,就有助于提高课堂效率。
写到这里,我深深地觉得自己今后还需要多学习,多 ……此处隐藏2994个字……V柱=r h
四、注意计算公式的书写要求,让学生更好的进行中小衔接
学生升上中学后,不论是数学、物理、化学匀需要书写计算公式。因此作为中、小学衔接,就应该这样做,要求学生带计算公式计算,养成良好习惯,为中学学习奠基。计算中并要求学生保留,既与中学衔接,又减轻学生计算的负担。
例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?
人教版六年级下册数学《圆柱与圆锥》教学反思已知h=28厘米,d=20厘米,r=10厘米,S表=dh+r
=20xx+10
=560+100
=660(平方厘米)
五、注意由面到体的变化,提高学生平面到立体的认识
长方形的小旗是一个平面图形,它旋转后所得到的轨迹是一个圆柱体。三角形小旗也是一个平面图形,它旋转后所得轨迹是一个圆锥体。学生看平面图的数据后会求立体图的体积(或表面积),可以提高学生平面图形到立体图形的认识。
六、注意加强知识的联系转化,提高学生的空间思维能力
1.圆柱体侧面展开转化成长方形
(1)圆柱的侧面展开得到一个长方形,这个长方形的长是12.56厘米,宽是4厘米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?
(2)圆柱的侧面展开得到一个正方形,这个正方形的边长是6.28分米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?
2.圆柱体转化成长方体
(1)圆柱的半径是2分米,高是5分米,将圆柱等分后拼成一个近似的长方体。表面积增加多少?
(2)圆柱等分拼成近似的长方体,这个长方体的长是12.56厘米,高是4厘米,求原来圆柱的侧面积和体积
(3)圆柱等分拼成近似的长方体,这个长方体的宽是5厘米,高是4厘米,求原来圆柱的侧面积和体积
(4)圆柱等分拼成一个近似的长方体,表面积增加100平方厘米,求原来的侧面积。
3.圆柱体截面情况
(1)圆柱的半径是4分米,高是10分米,将圆柱横切成3段,表面积增加多少?
(2)一根圆柱长是8分米,将圆柱横切成4段,表面积增加30平方分米。求原来圆柱的体积。
(3)圆柱的直径是10厘米,高是6厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加多少?
(4)圆柱的直径是8厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加80平方厘米,原来圆柱的侧面积、表面积分别是多少?体积是多少?
4.圆柱体侧面增加(减少)
(1)一个圆柱的高是10厘米,如果高再增加3厘米。表面积增加18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?
(2)一个圆柱的高是10厘米,如果高减少3厘米。表面积减少18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?
5.圆柱和圆锥体积知识变化与联系练习
(1)一个圆柱的体积是24立方厘米,把它削成一个最大的圆锥,要削去( )立方厘米。
(2)一个圆锥体和一个圆柱体底面积和高相等,它们的体积之和60立方厘米,这个圆锥的体积是( )
(3)圆柱和圆锥同底等高。圆柱的体积比圆锥的体积多1.8立方分米,原来圆柱的体积是( )。圆锥的体积是( )。
(4)一块底面半径为3分米,高5分米的圆锥体钢锭,熔铸成一个底面直径为4分米的圆柱形钢材,求这段钢材的长
(5)一个底面直径是24厘米的圆柱形玻璃杯装有水,水里浸没一具底面直径为12厘米,高8厘米的圆锥形钢块,当钢块从水中取出时,杯中的水会下降多少厘米?
(6)一个瓶子内直径8厘米,装入10厘米高的水后,盖好瓶子倒过来(如图),量得空余部分的高是2.5厘米,求这个瓶子的容积是多少毫升?
《圆柱与圆锥》教学反思10本节课是一堂复习课,对学生应该是一个温故而知新的过程。
对整理与复习课的一点小小想法:
复习课是帮助学生整理知识、查漏补缺的重要课时。如何在复习课中提高学生的学习效率?是摆在老师面前的一个难题。如果把它仅仅看作是对知识的再现与补缺,简单地将各知识点罗列出来,这样无法使学生系统理解知识,弄清各知识之间的联系和知识的发生过程,而且还会使学生觉得是"炒剩饭"。这样往往会因重复练习而缺少新意。为了避免这种现象,我想如果能够设计有效的教学环节,能切实有效地让学生投入到课堂中并积极参与课堂才会取得事半功倍的效果,教师积极利用各种教学资源,创造性的使用教材,设计适合学生发展的教学过程。因此,在复习基础知识这一教学中,教师应将各个知识点,根据其发生过程和内在联系,通过对知识的分类、整合,构建知识网络,形成知识体系,让学生通过知识网络形成高视角的思维结构建立整体意识和统一观点。为此,我进行了这样几个环节的设计:
1、课前谈话,活跃气氛。
通过师生谈话,引入课题。活跃教学气氛,营造轻松愉悦平等的学习氛围。 ?
2、回忆铺垫,梳理知识
在本环节我首先提出问题:“你知道圆柱与圆锥有哪些特征?”这是一个简单问题,每个学生都有说的,但又说不完整,其他学生会进行补充,学生的参与度高,积极性高。同时,在互动交往中师生相互启发,相互补充,从而使知识结构不断完善,强化了复习的功能。
3、适时拓展
整理复习的目的不仅仅在于对知识的整理,还需要通过对知识的整理达到复习与提高的效果。所以最后我安排了一个问题:一个圆柱长10厘米,接上4厘米的一段后,表面积增加了25.12平方厘米,求原来圆柱的体积是多少立方厘米?本环节是对本节课所学知识的拔高,不仅要让学生回顾本节课所学的主要数学知识和思想方法,还要给学生表达和发展思维的机会,进而提高学生的能力,也使学生认识到整理和复习的重要性。
反思:
反思这节课的教学设计与实际教学过程,还有一些问题需要思考与改进。如:
1、 怎样把握复习与新授的关系?
这节课的设计已改动了多次,通过谈话对圆柱和圆锥从表面到内部的特征进行再认识,对圆柱的表面积,圆柱、圆锥的体积进行再回顾,有学生对这部分知识进行再整理的过程花费了很多的精力。这样的“再认识”是不是有“新授”的痕迹?
2、 一节课中复习与练习的关系如何协调?
在复习中必要的练习是不可缺少的。我们可以以练习代替复习,可以边整理知识点边穿插练习,也可以在练习中引导学生通过对练习题的分类,整理出知识网络,还可以先梳理沟通知识间的联系,再针对性地进行练习,有时用一节课对某部分知识进行整理和复习后,后面要跟着三四节的练习课……复习与练习的关系如何协调才能提高复习的效率也是一个值得研究的问题。
由于教学经验欠缺,这节课还存在很多的问题,如:教学环节连接不够自然,新的教学方法运用不够熟练等等,以后还需要努力学习,提高自己的教学水平。