分解因式教学设计

时间:2024-03-13 19:58:39
分解因式教学设计

分解因式教学设计

作为一名老师,常常需要准备教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么什么样的教学设计才是好的呢?以下是小编收集整理的分解因式教学设计,仅供参考,欢迎大家阅读。

分解因式教学设计1

一、教材:

人教版八年级数学第十四章公式法分解因式

二、设计思路:

1、从教材的地位与作用看:

⑴本节课的主要内容是平方差公式的推导和平方差公式在整式乘法中的应用.

⑵它是在学生已经掌握单项式乘法、多项式乘法基础上的拓展和创造性应用;

⑶是对多项式乘法中出现的较为特殊的算式的第一种归纳、总结;是从一般到特殊的认识过程的范例.

⑷它应用十分广泛,通过乘法公式的学习,可以丰富教学内容,开拓学生视野.更是今后学习因式公解、分式运算及其它代数式变形的重要基础.

2、从学生学习过程的角度看:

⑴学生刚学过多项式的乘法,已经具备学习和运用平方差公式的知识结构;

⑵由于学生初次学习乘法公式,认清公式结构并不容易,因此,教学时不可拔高要求,追求一步到位;

⑶学生在本节课学习过程中出现的错误,迸发出的思维火花、情感都是本节课较好的教学资源.

三、教学目标:

(1)知识与技能

1.经历逆用平方差公式的过程.

2.会运用平方差公式,并能运用公式进行简单的分解因式.

(2)过程与方法

1.在逆用平方差公式的过程中,培养符号感和推理能力.

2.培养学生观察、归纳、概括的能力.

(3)情感与价值观要求:在分解过程中发现规律,并能用符号表示,从而体会数学的简捷美;让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战;勇于探索的精神和善于观察、大胆创新的思维品质。

四、教学重点:

利用平方差公式进行分解因式

五、教学难点:

领会因式分解的解题步骤和分解因式的彻底性。

六、教学准备:

深研课标和教材,分析学情,制作课件

七、教学过程:

八、教学反思:

因式分解这部分的内容是八年级数学第一学期重难点,虽然应用的公式只是三条,但要灵活应用于解题却不容易,所以我在制定这一章书的教学计划时就对教材的教学顺序作出了一些调整。因式分解的公式是乘法公式的逆运算,所以我将因式分解提前学,在学会乘法公式后暂时略过整式的除法直接学习因式分解,我认为这样调整后可以加强公式的熟练使用;另一方面我加强乘法公式的练习巩固,在没有学习因式分解之前,先针对平方差公式以及完全平方公式的应用及逆用作了一个专题训练。

在学习因式分解之前的这个专题训练的效果是不错的,因为平方差公式以及完全平方公式都是刚刚学习且应用较多的公式。作好这些准备工作之后,便开始学习因式分解。正式提出因式分解的定义的时候,同学们都一副明了的表情。而我也强调的就是因式分解与乘法公式是相反方向的变形,并且在练习中一再将公式罗列出来。然后讲授提公因式法、公式法(包括平方差、完全平方公式),讲课的时候是一个公式一节课,先分解公式符合条件的形式再练习,主要是以练习为重。讲课的过程是非常顺利的,这令我以为学生的掌握程度还好。因为作业都是最基本的公式应用,而提高题一般是特优生才会选择来做。

讲完因式分解的新课,我随堂出了一些综合性的练习题,才发现效果是不太好的。他们只是看到很表层的东西,而对于较为复杂的式子,却无从下手。

课后,我总结的原因有以下四点:

1、思想上不重视,因为对于公式的互换觉得太简单,只是将它作为一个简单的内容来看,所以课后没有以足够的练习来巩固。

2、在学习过程中太过于强调形式,反而如何创造条件来满足条件忽略了。导致他们对于与公式相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手。

3、灵活运用公式(特别与幂的运算性质相结合的公式)的能力较差,如要将9-25x2化成32-(5x)2然后应用平方差公式这样的题目却无从下手。究其原因,和我布置的作业及随堂练习的单一性及难度低的特点有关。

4、因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)。

因式分解是一个重要的内容,也是难点,我认为我对教材内容的调整是比较适合的,但是我忽略了学生的接受能力,也没有注意到计算题在练习方面的巩固及题型的多样化。在以后的教学中应该更多结合学生的学习情况去调整教学进度,多发现学生在学习方面的优势和不足之处。

分解因式教学设计2

因式分解是初中代数的重要内容,因其分解方法较多,题型变化较大,教学有一定难度。转化思想是数学的重要解题思想,对于灵活较大的题型进行因式分解,应用转化思想,有章可循,易于理解掌握,能收到较好的效果。

因式分解的基本方法是:提取公因式法、应用公式法、十字相乘法。对于结构比较简单的题型可直接应用它们来进行因式分解,学生能够容易掌握与应用。但对于分组分解法、折项、添项法就有些把握不住,应用转化就思想就能起到关键的作用。

分组分解法实质是一种手段,通过分组,每组采用三种基本方法进行因式分解,从而达到分组的目的,这就利用了转换思想。看下面几例:

例1、 4a2+2ab+2ac+bc

解:原式 =(4a2+2ab)+(2ac+bc)

=2a(2a+b)+c(2a+b)

=(2a+b)(2a+c)

分组后,每组提出公因式后,产生新的公因式能够继续分解因式,从而达到分解目的。

例2、 4a2-4a-b2-2b

解:原式=(4a2-b2)-(4a+2b)

=(2a+b)(2a-b)-2(2a+b)

=(2a+b)(2a-b-2)

按“二、二”分组,每组应用提公因式法,或用平方差公式,从而继续分解因式。

例3、 x2-y2+z2-2xz

解:原式=(x2-2xz+z2)-y2

=(x-z2)-y2

=(x+y-z)(x-y-z)

四项式按“三一”分组,使三项一组应用完全平方式,再应用平方差进行因式分解。

对于五项式一般可采用“三二”分组。三项这一组可采用提公因式法、完全平方式或十字相乘法,二项这一组可采用提公因式法或平方差公式分解,因此变化性较大。

……此处隐藏7596个字……忆与理解,其本质上是对因式分解的概念进行强化记忆。

在新课程的教学中,对因式分解的记忆退到了次要的位置,它把因式分解作为培养学生逆向思维、全面思考、灵活解决矛盾的载体。在教师的指导下,学生通过因数分解类比出因式分解,对学生进行类比的数学思想培养,由整式的乘法与因式分解的对比,对学生的逆向思维能力进行培养,也使得学生对于因式分解概念的引入不至于茫然。

尽管新旧两种教法的对比上,新课程的教学不一定马上显露出强劲的优势,甚至可能因为强化练习较少,在短时间内,学生的成绩比不上传统教法的学生成绩,但从长远目标看来,这种对数学本质的训练会有效地提高学生的数学素养,培养出学生对数学本质的理解,而不仅仅是停留在对数学的机械模仿记忆的层面上。

总之,教学的着眼点,不是熟练技能,而是发展思维,使学生在学习的情感态度与价值观上发生深刻的变化。

分解因式教学设计9

教学准备

教学目标

知识与能力

1.了解多项式公因式的意义,初步会用提公因式法分解因式;

2.通过找公因式,培养观察能力.

过程与方法

1.了解因式分解的概念,以及因式分解与整式乘法的关系;

2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.

情感态度与价值观

1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;

2.培养观察、联想能力,进一步了解换元的思想方法;

教学重难点

重点:能观察出多项式的公因式,并根据分配律把公因式提出来.

难点: 识别多项式的公因式.

教学过程

一、 新课导入

请同学们想一想?993-99能被100整除吗?

解法一:993-99=970299-99

=970200

解法二:993-99=99(992-1)

=99(99+1)(99-1)

=100×99×98

=970200

(1)已知:x=5,a-b=3,求ax2-bx2的值.

(2)已知:a=101,b=99,求a2-b2的值.

你能说说算得快的原因吗?

解:(1) ax2-bx2=x2(a-b)

=25×3=75.

(2) a2-b2=(a+b)(a-b)

=(101+99)(101-99)

=400

二、新知探究

1、做一做:

计算下列各式:

①3x(x-2)= __3x2-6x

②m(a+b+c)= ma+mb+mc

③(m+4)(m-4)= m2-16

④(x-2)2= x2-4x+4

⑤a(a+1)(a-1)= a3-a

根据左面的算式填空:

①3x2-6x=(_3x__)(_x-2__)

②ma+mb+mc=(_m_)(a+b+c_)

③m2-16=(_m+4)(m-4_)

④x2-4x+4=(x-2)2

⑤a3-a=(a)(a+1)(a-1)

左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?

总结: 把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

整式乘法 因式分解与整式乘法是互逆过程 因式分解

在am+bm=m(a+b)中,m叫做多项式各项的公因式.

公因式:

即每个单项式都含有的相同的因式.

提公因式法:

如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.

确定公因式的方法:

(1)公因式的系数是多项式各项系数的最大公约数;

(2)字母取多项式各项中都含有的相同的字母;

(3)相同字母的指数取各项中最小的一个,即最低次幂.

三、例题分析

例1 把12a4b3+16a2b3c2分解因式.

解:12a4b3+16a2b3c2

=4a2b3·3a2+ 4a2b3 ·4c2

= 4a2b3 (3a2 + 4c2)

提公因式后,另一个因式:

①项数应与原多项式的项数一样;

②不再含有公因式.

例2 把2ac(b+2c)- (b+2c)分解因式.

解:2ac(b+2c) -(b+2c)

= (b+2c)(2ac-1)

公因式可以是数字、字母,也可以是单项式,还可以是多项式.

例3 把-x3+x2-x分解因式.

解:原式=-(x3-x2+x)

=-x(x2-x+1)

多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).

四、当堂训练

1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.

(2)5x2-25x的公因式为 5x .

(3)-2ab2+4a2b3的公因式为-2ab2.

(4)多项式x2-1与(x-1)2的公因式是x-1.

2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2

课后小结

1.分解因式

把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.

2.确定公因式的方法

一看系数 二看字母 三看指数

3.提公因式法分解因式步骤(分两步)

第一步 找出公因式;

第二步 提公因式.

4.用提公因式法分解因式应注意的问题

(1)公因式要提尽;

(2)某一项全部提出时,这一项除以公因

式时的商是1,这个1不能漏掉;

(3)多项式的首项取正号.

板书

一、因式分解

把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

二、提公因式法

如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.

am+bm=m(a+b)

二、例题分析

例1、

例2、

例3、

三、当堂训练

《分解因式教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式