五年级数学说课稿
在教学工作者实际的教学活动中,常常要写一份优秀的说课稿,编写说课稿是提高业务素质的有效途径。那么说课稿应该怎么写才合适呢?以下是小编精心整理的五年级数学说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级数学说课稿1一、教材分析
《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。
教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:
1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。
3.人教版小学数学五年级下册《3的倍数的特征》说课稿:通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
根据以上的目标,我确定了本课的
教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
教学难点:3的倍数的数的特征的归纳过程。
二、教法和学法。
根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:
1、创设情景,激趣导入。
2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。
3、采用让学生自主发现的学习方法。
苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。
下面重点说说本课的教学过程设计,我分以下的六个环节进行教学。
三、教学过程。
一、复习导入。
为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。
下面的数,哪些是2的倍数?哪些是5的倍数。
364、420、515、736、1028、905
让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)
为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。
二、猜想验证。
由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作
猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。
三、体验新知。
由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。
3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21……
并引导学生进行观察发现:
3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报结果给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。
四、归纳总结。
在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
五、实践应用。
当学生学会了老师猜数所用的窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。
练习1:课本P19做一做1。
1,下列数中3的倍数有:
1435451003328767488
(这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)
练习2:
①P21页(5、6题),在基本练习的基础上我增设了3道发展题。
②把数娃娃送回家。题目如下:
这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)
练习3:P21(7题)
7、在口里填一个数字,使每个数都是3的倍数。
口74口2口4465口12口1
(这 ……此处隐藏22458个字……以下教学目标:
1、让学生在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。
2、通过小组合作学习活动,增强合作意识,发展数学思考能力和语言表达的能力。
3、在动手操作、观察比较中,发扬勇于探索、自主学习的精神,获得成功的体验。
三、以学定教说方法
《数学课程标准》强调:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”为此,课前我对部分学生进行调查分析了解到:
1、学生已有的知识经验:有93的学生能熟练找出一个数的所有因数,87的学生能正确表述“因数的含义、一个数因数的特点”。
2、学生喜欢的学习方式:有97的学生喜欢以“动手操作”、“自主探索”与“合作交流”的方式学习。
根据学生情况,我将本节课的教学重点确定为:理解公因数和最大公因数的意义,能找出两个数的公因数和最大公因数。难点为:找出两个数的公因数和最大公因数。关键是理解公因数和最大公因数的意义。
针对教学重点,我从教学实际需要出发,作到分层递进,由扶到放,让学生主动探索,获取知识。针对教学难点,我主要遵循三条原则:直观性原则、启发性原则和循序渐进原则。整个教学过程着重突出探、疑、动、悟。
在学法上我采取让学生用动手操作、自主操作、合作交流的学习方法进行学习,主要讲究重操、重学、重习、重实。
四、基于活动定过程
《数学课程标准》明确指出:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。于是,我决定以“数学活动”为主线,从“四导”入手:导新、导学、导练、导总结展开教学。
(一)创设情景,设疑导新
3月11日,日本发生了9。0的大地震。我国政府发扬国际人道主义精神,在第一时间给日本捐送了救灾物资。我家孩子也在家折了一些千纸鹤想寄给日本的小朋友,她折了红色千纸鹤10个,黄色千纸鹤15个,要想让它们分别装入信封,每种颜色的一样多并且没有剩余,每个信封可以装几个?最多装几个?同学们想不想帮他回答这个问题呢?学完本节课“最大公因数”我们就能解决这个问题了。
这一现实情景的对话设计,积极引导着学生进入今天的数学探究之中。这一环节着眼一个“疑”。
(二)动手操作,导学探究。
1、操作实验、感知概念
出示例题:用边长是整分米数的正方形地砖把长16分米,宽12分米储藏室的地面铺满,使用的地砖都是整块。“请同学们想一想,按这个要求,可以选择边长是几分米的地砖呢?。。。看来,一下子解决这个问题有些困难,我们可以借助学具来完成。”这一过渡性的语言,把学生带进小组合作,动手摆一摆、画一画的探究之中。
通过动手操作、小组合作、交流汇报,同学们可能找出了边长是1分米、2分米、和4分米的正方形地砖正好把贮藏室铺满。学生在动手
操作中感知形成的表象,为抽象数学概念提供了直观支柱。
2、联系旧知、建立概念
请同学们结合因数的知识想一想:正方形的边长1、2、4和长方形的长和宽有什么关系?
通过小组讨论交流,学生可能会说出:1、2、4既是16的因数又是12的因数;也可能会说,1、2、4是16和12的共同的因数;1、2、4是16和12公有的因数等。
从学生解决问题,发现规律的过程中,有效地引导学生发现要使正方形的地砖是整块的,它的边长必须既是16的因数又是12的因数。接着把16和12的因数,通过罗列的方法写在黑板上,(板书)同学们不难发现,1,2,4既是16的因数,又是12的因数。引导学生说出:16和12的公因数是:1、2、4。16和12的最大公因数是:4。所以地砖的边长可以是1 dm、2 dm、4 dm,最大是4dm。接着让学生总结出公因数和最大公因数的概念。(板书)最后用集合圈形式的展示,让学生懂得了,公因数和最大公因还可以用不同的形式来表示。使学生更直观,更清晰,更形象地理解公因数与最大公因数的概念。
学生凭借对因数概念的理解,积极参与、动手操作、讨论交流,经历了抽象概念的过程,在这个过程中,既获得了数学概念,也获得了数学方法。有效突破了本节课的重难点。
3、运用新知、解决问题
“现在让我们解决怎么装千纸鹤的问题,可以怎么办?”同学们用公因数、最大公因数知识解决了问题。(因为10和15的公因数是1、5,最大公因数是5,所以每袋可以装1个或5个,最多可以装5个。)这一活动,使学生切实体会到了数学源于生活,服务于生活。
【设计意图】:“活动是数学教学的生命线”,本环节我力求让学生在活动中体验,在体验中探究,在探究中互动,在互动中发展,在发展中提高。这一环节主要着眼于“探”、“动”。
(三)分层导练,巩固新知
有梯度练习的设计,意在能让学生更好的巩固新知,并能在此基础上有所提高和拓展。为此,我把练习的设计分为三个层次:
1、基本练习:准备一些数字卡片,1、2、3、4、6、9、12、18,按老师的口令站队,是12的因数的站在左边,是18的因数的站在右边,这样就有一些同学不知道该站在哪边,老师再明确:既是12的因数又是18的因数的,请站在中间。通过游戏巩固了学习知识,也极大地调动了他们学习数学的兴趣!帮助学生进一步理解因数和公因数的联系和区别。
2、开放提高:求18和27的最大公因数。在两个学生用列举法板书之后,让学生想一想,还有没有更简单的方法?学生可能会想出:列举出27的因数,再看哪些是18的因数,从而找出公因数和最大公因数;也可能会想出:列举出较小数18的因数,再看哪些是27的因数,从而找出公因数和最大公因数。针对学生的回答,我采用激励性的评价语言:“你真了不起,发现了快捷、有效的好方法。”让学生体会到成功的喜悦。通过这个练习,进一步突破了教学难点。
3、拓展应用:育才小学六(2)班有男生24名,女生30名,参加了争当“环保小卫士”活动,如果男女生分别进行分组,每组人数一样多,每组可以有几人,最多有几人?当学生找出可以施行的方案后,老师又追问:“如果是你,你认为每组几人比较合适?”学生用自己所学的知识解决身边的数学问题,同时提高了学生分析问题,灵活处理问题的能力。
【设计意图】:三个层次的练习做到了有趣、有益、有层、有度。这一环节主要着眼于“悟”。
(四)引导总结,完善建构
最后让学生说出这节课知道了什么,有什么收获。引导学生对教学内容归纳小结,起到梳理概括,画龙点睛,提炼升华的作用。
五、师生参与成板书
好的板书是学生掌握知识的网络图,因此本节课我的板书设计突出以下几点:
(1)条理清楚,层次明确。
(2)突出重点,与课堂小结相呼应。
总之,整个教学过程让学生在主体积极参与、操作、交流、动脑、动口的探究性学习中自主的建立概念、理解概念、应用概念。张扬了学生的个性,放飞了孩子的心灵!