初中数学合并同类项教案

时间:2024-05-12 21:50:33
初中数学合并同类项教案

初中数学合并同类项教案

作为一名优秀的教育工作者,编写教案是必不可少的,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?下面是小编帮大家整理的初中数学合并同类项教案,希望对大家有所帮助。

初中数学合并同类项教案1

[教学目标]

知识目标:使学生了解同类项的概念,能识别同类项,学会合并同类项并知道合并同类项所依据的运算律。

能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

[教学重点]

同类项的概念和合并同类项的法则及求代数式的值。[教学难点]学会合并同类项.

[教学方法]

引导、启发、探求

[教学过程]

一、复习回顾

1.同类项:所含字母相同,并且相同字母的指数也相同的项。几个常数也是同类项。

2.同类项有两个特征

(1)所含字母相同;

(2)相同字母的指数分别相同;(两者缺一不可)

3.同类项与他们的系数大小无关;

4.同类项与它们所含相同字母的顺序无关;

5、判断下列说法是否正确。

(1)3x与3mx是同类项。

(2)2ab与-5ab是同类项。

(3)3x2与1?3yx2是同类项。

(4)5ab2与2ab2c是同类项。

(5)23与32是同类项。

二、创设情境,引入课题

问题:为了搞好班会活动,班长和生活委员去购买一些水笔和软抄本作为奖品,他们首先购买了15本软抄本和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软抄本和5支水笔。问:

1、他们两次共买了多少本软抄本和多少支水笔?

答案:21本软抄本,25支水笔2、如果软抄本的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?答案:15x+20y+6x+5y=21x+5y提问合并同类项概念:把多项式中的同类项合并成一项。

设计意图:用此方式,充分调动了学生积极参与,激发了学生求知欲望创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题.

三、实践思考探索交流

1、找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项。

问题1:同类项有哪些?同类项怎么合并?

①-3+5=________;② 3x2y+5x2y=__________=______

其理由是____________;③-4xy2 +2xy2=____________=_______

其理由是____________.问题2:在一个多项式中,不在一起的同类项能否将同类项结合在一起?为什么?

答:可以,理由是运用加法交换律与结合律将同类项结合在一起,原多项式不变。

解:3x2y-4xy2-3+5x2y+2xy2+5

=3x2y+5x2y-4xy2+2xy2+5-3

加法交换律

=(3x2y+5x2y)+(-4xy2+2xy2)+(5-3)

统一加法的形式

=(3+5)x2y+(-4+2)xy2

+(5-3)

乘法分配律的逆运算

=8x2y-2xy2+2

合并问题4:根据上面合并同类项的例子,你能归纳合并同类项的法则吗?

合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.注意:(1)、合并的前提是有同类项.(2)、合并指的是系数相加,”相加”指的是代数和.(3)、合并同类项的根据是加法交换律、结合律以及乘法分配律。

设计意图:利用问题形式提示学生上面是利用了乘法的分配律逆运算(学生分组讨论.)例

2、合并下列多项式中的同类项。(1)a3-a2b+ab2+a2b-ab2+b3(2)6a2-5b2+2ab+5b2-6a2学生思考:合并同类项的步骤是怎样?

1、准确地找出同类项。

2、利用合并同类项的法则合并同类项。3写出合并后的结果。

解:

(1)、a3-a2b+ab2+a2b-ab2+b3

找出同类项

=a3+(-a2b+a2b)+(ab2-ab2)+b3把同类项结合

=a3+(-1+1)a2b +(1-1)ab2+b3

把同类项合并

=a3+b3

若该项没有同类项怎么办?照抄下来

(2)6a2-5b2+2ab+5b2-6a2

=6a2-6a2-5b2+5b2 +2ab

=(6a2-6a2)+(-5b2+5b2)+2ab

=2ab

方法是:

(1)系数:各项系数相加作为新的系数。

(2)字母以及字母的指数不变。

强调学生注意:

(1)、用画线的方法标出各多项式中的同类项,以减少运算的错误。

(2)、移项时要带着原来的符号一起移动。

(3)、两个同类项的系数互为相反数时,合并同类项,结果为零。

(4)、①、合并同类项时,只能把同类项合并为一项,不是同类项的不能合并,不能合并的项,在每一步运算中都要写上;②、同类项移动位置时,不要漏掉它的性质符号,特别注意“-”。

3、求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3。

方法1解:当x=-3时

原式=3×(-3)2+4×(-3)-2×(-3)2-(-3)+(-3)2-3×(-3)-1

=3×9-12-2×9+3+9+9-1

=27-12-18+3+9+9-1 =17

方法2解:3x2+4x-2x2-x+x2-3x-1

=3x2-2x2+x2+4x-x-3x-1

=(3-2+1)x2+(4-1-3)x-1

=2x2-1

当时x=-3时,原式=2×(-3)2-1 =17

提问学生:通过求值你发现了什么?怎样更简捷的求值呢?

答:求多项式的值,常常先合并同类项,再求值,这样比较方便。

设计意图:使学生知道在此题形中先化简,再求值比较方便,帮助学生提高解题速度。

四、概括提升(课堂练习)。

1、如果两个同类项的系统互为相反数,那么合并同类项后,结果.比如-5a2b+5a2b=.2、先标出下列各多项式的同类项,再合并同类项。

(1)、3x-2x2+5+3x2-2x-5

(2)、a3+a2b+ab2-a2b-ab2-b3解答:略

设计意图:帮助学生巩固本节课所学的内容,同时也可提高学生计算能力。

五、本节你学到了什么?

合并同类项:我们把多项式中的同类项合并成一项。

合并同类项法则:

(1)把同类项的系数相加,所得的结果作为系数;

(2)字母和字母的指数保持不变.

(3)求代数式的值时,先化解,再代入比较简便。

设计意图:帮助学生总结和巩固本节课所学的内容。

六、作业:P66第1题和第2题。

设计意图:帮助学生巩固本节课所学的内容

教学反思

通过练习,使学生熟悉并掌握同类项概念和合并同类项法则。整个教学过程来说,学生反映较好,但是课下我自己的反思,发现自己有很多地方需要注意和改进。

1、板书设计很重要,这能体现教师的讲课内容的重点,难点。而我的板书在这方面需要改进。

2、提出的问题还没有到位。在教学过程总,曾出现学生不知老师所提出问题的意图,我的语言表达不是很准确,不是很到位,这是我今后在教学方面应该加强注意和练习。

3、同类项的概念要让学生着重理解到会灵活运用。

4、探究过程是一个十分重要的过程。这时老师应该特别注意学生的反应。

5、不仅内容要传授准确,而且要强调学生做题的规范性,使学生养成良好的学习习惯。

6、在学生学习活动环节,老师应关注学生探究化简方法是否能积极思考,主动参与;是否能说出化简方法的理论依据,学生对同类项定义的理解和掌握情况对合并同类项法则的总结情况。

7、结合学校特点,发挥优势,数学科课堂教学模式还要更加深入地探索、研究,逐步形成自我教学特色。

8、在授课前要想办法,用生动有趣的图案和实物来代替抽象的理论知识,来调动学生的学习积极性,用精彩的问题设置吸引学生,用数学实验和游戏吸引学生,用生动有趣的语言、事例吸引学生。

另外,我对本节课的重点内容的把握不是很好。对学生的接受新知识的能力有所高估。在今后的教学中,应需要钻研教材,了解学生的基本情况。新知识的接受需要一个过程,突出学生主体地位,让学生在课堂上的思考、讨论、总结这也需要一个过程,培养学生的良好的学习习惯。

总之,应用教材,如何引导学生去学成为关键。这就要求我们的课堂教学模式有所改进,充分考虑学生的好奇心和荣誉感,鼓励学生多讨论多参与,让学生有机会讲述自己的见解,我们要有“度”的进行课堂管理。不仅要注重培养学生的.学习兴趣,更要尊重学生的学习兴趣,不能扼杀学生的学习热情,让学生在打好学习基础的同时,又培养了自身的能力,发展了自身的特长。

初中数学合并同类项教案2

教材分析:

本节课是在学习了单项式、多项式之后,以同类项的概念、合并同类项的法则及其运用为教学内容。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有着千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这是一节承上启下的课。同时也是渗透数学思想分类思想的一节课。

教学目标:

知识与技能:在具体情境中了解同类项及合并同类项法则。

过程与方法:

1、经历合并同类项法则的概括过程,进一步发展学生的抽象思维能力和概括能力;

2、通过分组合作学习活动,学会在活动中与他人合作,并能与他人交流思维的过程和结果。

情感态度与价值观:

1、通过合并同类项法则的概括与合作学习的过程,培养学生从特殊到一般的思维认知规律

2、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。

教学重难点:

重点:同类项的概念、合并同类项的法则及应用。难点:正确判断同类项;准确合并同类项。

教学过程:

(一)创设情境,激发兴趣

多媒体展示苹果、橘子。问学生怎样分类?

师指出:不仅生活中处处有分类的问题,在数学中也有分类的问题。进入数学问题的探究

(设计目的:寓教于乐,使数学与生活融为一体,有益于学生理解数学、热爱数学,充分调动学习的积极性,为本课学习做好准备。)

(二)观察探究,分组讨论

多媒体展示:5a与9a、-5m2n与6m2n、-y x2与8x2y、0与思考:上述代数式归为四类需要有什么共同的特征?请学生交流讨论后归纳

得出同类项的概念:所含字母相同,并且相同字母的指数也相同的项称为同类项。

所有的常数项也叫同类项。

(设计目的:教师充分发挥学生的主体作用,让学生从自己的视点去观察、归纳,让学生亲自体验知识获得的过程,享受成功的喜悦。)

(三)深入思考,强化概念

思考:

1、同类项的判断依据是什么?有哪几个方面?

2、同类项与系数有关吗?

3、同类项与它们所含字母的顺序有关吗?强化:课件展示课本练习1(设计目的:趁热打铁的简单练习,有利于巩固知识,使学生牢固掌握同类项的知识,增强应用意识。)

(四)再创情境,引出法则

1.回顾引入问题:两个苹果加三个苹果等于几个苹果?一个橘子加两个橘子等于几个橘子?

2.合并同类项:把多项式中的同类项合并成一项就叫做合并同类项.3.合并同类项的法则:

同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(设计目的:以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项及其法则的欲望,从而较自然的引入新课题。)4.快速巩固:课本练习2

(五)例题分析,合作交流

例1:合并下列多项式中的同类项:? 4x2?2x?1?3x2?3x?2 ? 4a2?3b2?2ab?3a2?b2

111例2:求多项式3a?abc?c2?3a?c2的值,其中a??,b?2,c??3

336(设计目的:教师示范解题格式,规范操作,学生再加以运用,注重培养学生规范解题的能力。)

(六)练习巩固,强化目标

(七)小结与评价

通过本节课的学习你有哪些收获?

同类项:

(1)所含字母相同;

(2)相同字母的指数也相同

合并同类项法则:

(1)系数相加作为结果的系数。

(2)字母与字母的指数不变。

(八)作业布置:

课本P76

习题第1、2题

初中数学合并同类项教案3

学习方式:

从具体问题情景中探索体会合并同类项的含义。

逆用乘法分配律探求合并同类项法则。

通过多角度的练习辨别同类项,加 深对概念的理解,培养思维的严密性。

教学目标:

1、在具体情境中理解、掌握同类项的定义;

2、在具体情境中, 让学生了解合并同类项的法则,能进行同类项的合并。

3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。

4、通过“合并同类项”的学习,继续培养学生的运算能力。

教学的重点、难点和疑点

1、重点:同类项的概念,合并同类项的法则。

2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。

3、疑点:同类项与同次项的区别。

教具准备

投影仪(电脑)、自制胶片

教学过程:

提出问题

创设情景 (出示投影)

如图的长方形由两个小长方形组成,求这个长方形的面积。

①当学生列出代数式 8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:

(8+5)n

②接着引导学生写出等式:

8n+5n=(8+5)n=13n

启发学生观察上式是怎样的一种变化;

它类似于我们前面学过的什么运算律

为什么8n与5n可以合并成一项(组织学生充分

讨论,从而引出同类项的概念)

③同类项的概念

举出一些具有代表性的同类项的实际例子。

如:-7a2b , 2a2b ;

8n , 5n ;

3x2, -x2

引导学生观察上面给出的几组代数式具有什么共同特点:

①所含的字母相同

②相同字母的指数也相同

教师顺势提出同类项的概念

强调同类项必须满足以上两条

④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。 学生观察,思考

讨论交流

(反例巩固) 出示问题;

x与y,

a2b与ab2,

-3pa与3pa

abc与ac,

a2和a3 是不是同类项

(给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)

其中:a2b与ab2可让学生充分讨论交流。

(教师强调“必须是相同字母的指数相同”这句话的含义,从而分清同类项与同次项的区别)

(引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。

紧扣定义

加以判别

例1 根据乘法分配律合并同类项

(1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3

(教师强调乘法分配律的逆运用)

(学生板书完毕后,教师引导学生观察合并的前后发生了什么变化?其中系 数怎样变化的?字母及字母的指数又怎样变化了)

由此引导学生总结出合并同类项的法则:

在合并同类项时,只把同类项的系数相加减,字母和字母的指数不变。

学生思考

解答(找二生板演其他学生独立写出过程)

总结法则

可根据情况适当复习关于乘法分配律的有关知识

通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。

应用法则

例2,合 并同类项

①3a+2b-5a-b

②-4ab+8-2b2-9ab-8

给学生留有足够的独立的思考时间

找二生到黑板上板演。

学生 板演后,教师组织 学生交流评价,根据出现的问题,作点拔,强调。

强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。

教师不给任何提示

学生在练习本上完成,然后同桌同学互相交换评判。

(二生到黑板上板演)

变式

应用 补充例题

例3,求代数式的值

①2x2-5x+x2+4x-3 x2-2 其中x=

②-3 x2+5x-0.5 x2+x-1 其中x=2

出示 例题后,教师不要给任何提示,先让学生独立思考。

部分学生会直接把x= 代入式中去计算,出现这一情况后,教师可积极引导。

问:还有没有其 他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。

独立完成

分析比较

寻求简便方法

随堂

练习 1、合并同类项

①3y+ y=__________

②3b-3a2+1+a3-2b=____ _______

③2y+6y+2xy-5=_____________

2、求代数式的值

8 p2-7q+6q-7p2-7

其中p=3 q=3

练习交流合作

教师可根据情况适当补充

  小结 今天你学会了哪些知识?获得了哪些方法,

有什么体会? 自己总结

作业 教材课后习题

《初中数学合并同类项教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式