初中数学知识点归纳
上学期间,看到知识点,都是先收藏再说吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。为了帮助大家更高效的学习,下面是小编整理的初中数学知识点归纳,希望对大家有所帮助。
1.通过猜想,验证,计算得到的定理:
(1)全等三角形的判定定理:
(2)与等腰三角形的相关结论:
①等腰三角形两底角相等(等边对等角)
②等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一)
③有两个角相等的三角形是等腰三角形(等角对等边)
(3)与等边三角形相关的结论:
①有一个角是60°得等腰三角形是等边三角形
②三个角都相等的三角形是等边三角形
③三条边都相等的三角形是等边三角形
(4)与直角三角形相关的结论:
①勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方
②勾股定理逆定理:在一个三角形中两直角边的平方和等于斜边的平方,那么这个三角形一定是直角三角形
③HL定理:斜边和一条直角边对应相等的两个三角形全等
④在三角形中30°角所对的直角边等于斜边的一半
2.两条特殊线
(1)线段的垂直平分线
①线段的垂直平分线上的点到线段两边的距离相等互为逆定理{
②到一条线段两个端点距离相等的点在这条线段的垂直平分线上
③三角形的三条垂直平分线交于一点,并且这一点到这三个顶点的距离相等
(2)角平分线
①角平分线上的点到这个角的两边距离相等互为逆定理{
②在一个角的内部,并且到这个角的`两边距离相等的的点,在这个角的角平分线上
3.命题的逆命题及真假
①在两个命题中,如果一个命题的条件与结论是另一个命题的结论与条件,我们就说这两个命题互为逆命题,其中一个是另一个的逆命题
②如果一个定理的逆命题是真命题,那么他也是一个定理,我们称这两个定理为互逆定理
③反正法:从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件,定理相矛盾,矛盾的原因是假设不成立,所以肯定了命题的结论,使命题获得了证明
第二章一元二次方程
1.一元二次方程:只含有一个未知数X的整式方程,并且可以化成aX?+bX+C=0(a≠0)形式称它为一元二次方程
aX?+bX+C=0(a≠0)→一般形式
aX?叫二次项bX叫一次项C叫常数项a叫二次项系数b叫一次项系数
2.一元二次方程解法:
(1)配方法:(X±a)?=b(b≥0)注:二次项系数必须化为1
(2)公式法:aX?+bX+C=0(a≠0)确定a,b,c的值,计算b?-4ac≥0
若b?-4ac>0则有两个不相等的实根,若b?-4ac=0则有两个相等的实根,若b?-4ac<0则无解
若b?-4ac≥0则用公式X=-b±√b?-4ac/2a注:必须化为一般形式
(3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a?-b?=0→(a+b)(a-b)=0
②运用公式法:{
完全平方公式:a?±2ab+b?=0→(a±b)?=0
③十字相乘法
例题:X?-2X-3=0
1/111
×}X?的系数为1则可以写成{常数项系数为3则可写成{
1/-31-3
--------
-3+1=-2交叉相乘在相加求值,值必须等于一次项系数
(X+1)(X-3)=o