初中数学案例反思10篇
在日常生活和工作中,课堂教学是重要的任务之一,反思过去,是为了以后。那么优秀的反思是什么样的呢?以下是小编为大家收集的初中数学案例反思,仅供参考,欢迎大家阅读。
初中数学案例反思1教学背景
这是初三总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象。
教学案例
本节课的教学任务是一次函数的基础知识及简单应用没有涉及实际应用。为了节约学生的时间,打造高效课堂,我开门见山,直接向学生展示教学目标。然后让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。例如,在图象及其性质环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。这样,使无味的复习课变得活跃一些,增强学习气氛。
然后我组织学生以比赛的形式做一些针对性的练习。为了巩固知识点,学生解决每一个问题时都要求其说出所运用的知识点。随后用大屏幕展示出标准答案。
基础训练一:
1、指出下列函数中的正比例函数和一次函数:①y = x +1;②y = - x/5;
③y = 3/x ;④y = 4x ⑤y =x(3x+1)-3x ⑥y=3(x-2);⑦y=x/5-1/2。
2、下列给出的两个变量中,成正比例函数关系的是:A、少年儿童的身高和年龄;B、长方形的面积一定,它的长与宽; C、圆的面积和它的半径;D、匀速运动中速度固定时,路程与时间的关系。
3、对于函数y =(m+1)x + 2- n,当m、n满足什么条件时为正比例函数?当m、n满足什么条件时为一次函数?
4、k,b的符号与直线y=kx+b(k0) 的位置关系:
k的符号决定了直线y=kx+b(k0) b的符号决定了直线y=kx+b与y轴的交点 。当k0时,直线 当k0时,直线 。
当b0时,直线交于y轴的 当b0时,直线交于y轴的 。
为此直线y=kx+b(k0) 的位置有4种情况,分别是:
当k0, b0时,直线经过 当k0, b0时,直线经过
当k0,b0时,直线经过 当k0,b0时,直线经过 。
基础训练二:
1. 写出一个图象经过点(1,- 3)的函数解析式为 。
2.直线y = - 2X - 2 不经过第 象限,y随x的增大而 。
3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是 。
4.已知正比例函数 y =(3k-1)x,若y随x的增大而增大,则k的取值范围是 。
5、过点(0,2)且与直线y=3x平行的直线是 。
6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1
7、若函数y = ax+b的图像过一、二、三象限,则ab 0。
8、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。
9、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。
10、将直线y = -2x-2向上平移2个单位得到直线
将它向左平移2个单位得到直线 。
综合训练:
已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。
教学反思
从本节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,所以我选择在多媒体上课。应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。可在课的进行中我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。
在初三总复习时,我理解学生的忙,所以能包办的我就一律代做,以为这就是帮学生减轻负担,学生自己去做的事是少了,可是需要学生被动记忆的知识多;教师把一节设计的井井有条,想要学生在这一节课里收获更多,但被动的学生并没有全身心的投入到学生中去,降低了课堂效率,又把好多任务压到课下,最后教师减轻学生的课后负担的想法还是落空了。
通过这节复习课的教学让我从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真 正减轻学生负担的基础上打造高效课堂。
初中数学案例反思21. 根据新课程概念:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和师生、生生互动交流,从而使学生能很好地掌握角平分线的性质。并获得用折纸这样的操作发现法探究图形性质的活动经验。
2. 在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知识内容,又注意了我校学生的实际情况。因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练活动中学会运用角平平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展”基本理念。
3. 本节课在教法上采用了“探究——发现”教学模式,这是基于本节课的知识内容,有实践背景,适用于让学生动手操
作探究,因此本节课在教学活动设计中,注意突出学生活动,设置了四个活动:①动手活动:通过动手度量、折纸等活动,探索角平分线的性质;②表述活动:用文字语言、图形语言、符合语言表述角平分线性质,并互动说理证明;③应用活动:角平分线的性质的认识及应用;④拓展活动:结合本节课的知识,对线段的轴对称性进行探索。
4. 教材中只给出了角平分线性质的文字语言叙述,并没有给出符号语言的表述,由于我校的学生在第二章、第五章学习时,已经接触了符号语言的叙述,并且能够进行简单的说理。因此在这里,教师引导学生将文字语言结合图形语言转化为 ……此处隐藏5181个字……西瓜每千克售价降低多少元? 课堂上学生积极参与探究、分析对比得出:第(1)、(4)两题的两个答案都满足题意。第(2)、(3)两题为尽快减少库存,只选取降价多的那个答案(这与资料中的答案相吻合)。学生进一步总结、归纳得出:若题中强调尽量减少库存或尽快减少库存,应只选取降价多的那个答案。若题中没有特殊要求,那么两个答案都满足题意。
初中数学案例反思10一、教学目标:
1、知道一次函数与正比例函数的定义;2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想。3、弄清一次函数与正比例函数的区别与联系;4、掌握直线的平移法则简单应用;5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。难点:对直线的平移法则的理解,体会数形结合思想。
三、教学媒体:大屏幕。
四、教学设计简介:
因为这是初三总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象,而本节的教学任务是一次函数的基础知识及其简单的应用,没有涉及实际应用。为了节约学生的时间,打造高效课堂,我开门见山,直接向学生展示教学目标,然后让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。例如,在“图象及其性质”环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。这样,使无味的复习课变得活跃一些,增强学习气氛。随后教师就用大屏幕展示出标准答案,然后教师组织学生以比赛的形式做一些针对性的练习。为了巩固知识点,学生解决每一个问题时都要求其说出所运用的知识点。
五、教学过程:
1、一次函数与正比例函数的定义:
一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是x的一次函数
正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2.一次函数与正比例函数的区别与联系:
(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练一:
1、指出下列函数中的正比例函数和一次函数:①y=x+1;②y=-x/5;
③y=3/x;④y=4x;⑤y=x(3x+1)-3x;⑥y=3(x-2);⑦y=x/5-1/2。
2、下列给出的两个变量中,成正比例函数关系的是:A、少年儿童的身高和年龄;B、长方形的面积一定,它的长与宽;C、圆的面积和它的半径;D、匀速运动中速度固定时,路程与时间的关系。
3、对于函数y=(m+1)x+2-n,当m、n满足什么条件时为正比例函数?当m、n满足什么条件时为一次函数?
7、k,b的符号与直线y=kx+b(k≠0)的位置关系:
k的符号决定了直线y=kx+b(k≠0)_____________;b的符号决定了直线y=kx+b与y轴的交点________。当k>0时,直线__________;当k<0时,直线__________。
当b>0时,直线交于y轴的_________;当b<0时,直线交于y轴的___________。
为此直线y=kx+b(k≠0)的位置有4种情况,分别是:
当k>0,b>0时,直线经过__________;当k>0,b<0时,直线经过__________;
当k<0,b>0时,直线经过__________;当k<0,b<0时,直线经过______________。
基础训练二:
1.写出一个图象经过点(1,-3)的函数解析式为_______________________。
2.直线y=-2X-2不经过第象限,y随x的增大而_______________。
3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是_______________。
4.已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值范围是____________。
5、过点(0,2)且与直线y=3x平行的直线是_______________。
6、若正比例函数y=(1-2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是____________。
7、若函数y=ax+b的图像过一、二、三象限,则ab___________0。
8、若y-2与x-2成正比例,当x=-2时,y=4,则x=_____________时,y=-4。
9、直线y=-5x+b与直线y=x-3都交y轴上同一点,则b的值为_______。
10、将直线y=-2x-2向上平移2个单位得到直线__________________;
将它向左平移2个单位得到直线______________________。
综合训练:已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。
六、教学反思:
本节课是我这学期做的一节汇报课。教学任务基本完成,最后剩下一道综合训练题没来得及探讨,留作了课后作业。从本节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,所以我选择在多媒体上课。应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。可没想到,在课的进行中,我就听到有的教师在切切私语,都是初三学生了,怎么好象没有几个学习的。我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。以致于面对简单的问题都卡,思维不连续。纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。
通过这节复习课的教学让我从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。